Some remarks on the exact solution for an optimal impermeable parachute problem
نویسندگان
چکیده
منابع مشابه
Exact Solution for the Optimal Neuronal Layout Problem
Evolution perfected brain design by maximizing its functionality while minimizing costs associated with building and maintaining it. Assumption that brain functionality is specified by neuronal connectivity, implemented by costly biological wiring, leads to the following optimal design problem. For a given neuronal connectivity, find a spatial layout of neurons that minimizes the wiring cost. U...
متن کاملAn Exact Algorithm for the Mode Identity Project Scheduling Problem
In this paper we consider the non-preemptive variant of a multi-mode resource constrained project scheduling problem (MRCPSP) with mode identity, in which a set of project activities is partitioned into disjoint subsets while all activities forming one subset have to be processed in the same mode. We present a depth-first branch and bound algorithm for the resource constrained project schedulin...
متن کاملSome Remarks on Prill’s Problem
If f : X → Y is a non-constant map of smooth curves over C and if there is a degree two map π : X → C where C is a smooth curve with genus less than that of Y , we show that for a general point P ∈ Y , f−1(P ) does not move except possibly in one particular case. In particular, this implies that Prill’s problem has an affirmative answer if X as above is hyperelliptic or if f is Galois. 2000 Mat...
متن کاملOn an Exact Optimal Solution for a Second - Order Cone Programming Problem
This paper proposes a solution algorithm to explicitly obtain the exact optimal solution of a second-order cone programming (SOCP) problem. The proposed solution algorithm is based on a parametric solution approach to determine the optimal strict region of parameters, and the main procedures are to perform deterministic equivalent transformations for the main SOCP problem and to solve the KKT c...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2004
ISSN: 0377-0427
DOI: 10.1016/j.cam.2003.10.006